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Abstract
Fault detection is crucial to ensure the reliability of localization systems. However, conventional fault
detection methods usually assume that noises in the system are Gaussian distributed, limiting their
effectiveness in real-world applications. This study proposes a fault detection algorithm for the extended
Kalman filter (EKF) based localization system by modeling non-Gaussian noises as a Gaussian mixture
model (GMM). The relationship between GMM-distributed noises and measurement residual is rigorously
established through error propagation, which is utilized for constructing the test statistic for a Chi-squared
test. The proposed method is applied to an EKF-based 2D light detection and ranging (LiDAR) and inertial
measurement units (IMU) integrated localization system. The experimental results in a simulated urban
environment show that the proposed method exhibits a 30% improvement in the detection rate and a 17–
23% reduction in detection delay, compared with the conventional method with Gaussian noise modeling.
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1 INTRODUCTION

Gaussian noise modeling is not enough in developing fault detection methods: Fault detection is essential for localization and
navigation systems in some safety-critical applications (Joerger & Pervan, 2016; Osechas et al., 2012; Pervan et al., 1998; R.
Wang et al., 2016), which is the technology to check the occurrence of faults in the system as well as to determine the time
of fault occurs (Z. Gao et al., 2015). Fault detection methods can be mainly classified into model-based, knowledge-based,
and signal-based methods (Z. Gao et al., 2015). Among these methods, model-based methods, especially statistical analysis
of residuals, appear to be the most popular approach for detecting faults in localization and navigation systems (Angus, 2006;
G. Gao et al., 2020; Puchalski & Giernacki, 2022; Yang et al., 2013), since system models are usually well-established and
known to designers in these applications (Z. Gao et al., 2015). However, conventional model-based methods often assume that
the noises in the system are Gaussian-distributed (Hsu et al., 2017; Joerger et al., 2014; Osechas et al., 2012; Pervan et al., 1998;
Walter & Enge, 1995). For example, Walter and Enge (1995) constructed a test statistic by using the sum of the squares of the
range residual errors (SSE), which is utilized to do a Chi-squared test to detect potential faults in pseudorange measurements.
The measurement noise is assumed to have a multivariate Gaussian distribution in normal conditions where satellites have no
malfunctions. R. Wang et al. (2016) designed a fault detection method for the navigation system based on the Chi-squared
test and the sequential probability ratio test. In their work, all system process noise and measurement noise are modeled as
zero-mean Gaussian distributions. Unfortunately, noises in the real world usually have non-Gaussian properties. Examples can be
found in global navigation satellite system (GNSS) (J. Rife & Pervan, 2012), micro-electromechanical systems (MEMS) inertial
sensors (Hou & El-Sheimy, 2003; Lethander & Taylor, 2023), and light detection and ranging (LiDAR) sensors (Xu et al., 2018).
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These unrealistic Gaussian assumptions can result in increased false alarm rates or degraded fault detection rates in real-world
applications, limiting the reliability and effectiveness of preventing systems from faults.

Gaussian mixture model is promising but remains underexplored in the fault detection research: The modeling of non-Gaussian
noises receives increasing attention, and its application in the localization and navigation field, including multi-sensor fusion,
robust localization, and integrity monitoring, has been extensively explored (Davis & Blair, 2015; Langel et al., 2020; J. H. Rife,
2018; Wen et al., 2021). One of the most popular approaches is to model noises as the Gaussian mixture model (GMM), which
represents a probability distribution as a weighted combination of multiple Gaussian distributions. Examples include Ali-Loytty
and Sirola (2007), which proposed the Gaussian sum filter (GSF) method for hybrid positioning with non-Gaussian noises by
approximating the prior density of the state as a Gaussian mixture, Pfeifer and Protzel (2019), which proposed a robust sensor
fusion algorithm by adaptively tuning the GMM parameters of the noise distribution, and Blanch et al. (2008), Z. Gao et al. (2022),
and Yun et al. (2008), which developed the overbounding algorithms and derived the protection levels for integrity monitoring by
modeling measurement noises as a GMM. Nevertheless, very limited research focuses on the fault detection problem considering
non-Gaussian noises. One example can be found in Yun et al. (2008), which developed a fault detection method using GSF. In
particular, the measurement noise is modeled as a GMM, and several parallel Kalman filters are developed to deal with each
Gaussian component. The fault detection process is realized by comparing the one-side tail probability of the residual from the
GSF with a predefined threshold. J. Wang et al. (2022) developed a similar algorithm. The difference is that their approach involves
summing up the residual of each filter according to the mixture weight and subsequently taking the summation for a Chi-squared
test to identify potential faults. Numerical experiments show that these approaches exhibit improved detection performance
compared to conventional Gaussian methods. However, the improvement can be attributed to at least two factors: 1) the difference
between the GSF-based detection method and the conventional detection method based on the Chi-squared test; 2) the difference
between the GMM-based noise modeling and the Gaussian-based noise modeling. It is challenging to differentiate whether these
improvements stem from the differences in the detection methods themselves or from the differences in the noise modeling.

Our contributions in this paper: Recently, Hashemi and Ruths (2019) proposed a fault detection method for the linear time-
invariant control system with non-Gaussian noise. In their work, the residual of the observer in the linear time-invariant (LTI)
system is modeled as a GMM and used to construct the test statistics for a Chi-squared test. This architecture is consistent with
the conventional Gaussian method based on the Chi-squared test, providing valuable insights on fairly comparing the effects of
non-Gaussian noise modeling on fault detection problems. Inspired by their work, this study aims to extend the idea to the fault
detection problems in localization systems under non-Gaussian noises. Specifically, we establish the relationship between the
GMM-distributed noises and the residual in an extended Kalman filter (EKF) based localization system. Then we transform
the residual to a variable whose distribution approaches a standard multivariate normal (MVN) distribution. The Mahalanobis
distance from the transformed variable to a standard MVN distribution is taken as the test statistic for a Chi-squared test to
detect faults in the measurements. The proposed method is then applied to a localization system constructed by integrating
LiDAR measurements and inertial measurement units (IMU) measurements via the EKF. For a fair comparison of different
detection algorithms, a simulated urban environment is constructed based on the 3D simulator, CARLA (Dosovitskiy et al.,
2017), making it possible to simulate GMM-distributed noises and ensuring the reproducibility of experiments. Finally, we
compare the proposed method with the conventional Gaussian method in the simulated environment, and their performance is
evaluated regarding two types of measurement failures. Our contributions in this study are two folds:

1. A fault detection algorithm designed for GMM noises. This study presents a fault detection algorithm for localization
systems with Gaussian mixture noises, including a comprehensive analysis of the relationship between noises and residuals,
a transformation process for the residual based on the law of total covariance, and a Chi-squared test. We prove that
the measurement residual is the linear combination of the measurement and process noises and also exhibits a GMM
distribution. In addition, the proposed method shares the same methodology as the conventional Gaussian method. The
substantial difference in fault detection performance between these two methods is therefore attributed to the difference in
noise modeling, making it possible to fairly evaluate the effects of different noise modeling on fault detection tasks in
localization systems.

2. A simulated platform for a fair comparison of fault detection algorithms. This study establishes a simulated urban
environment based on the 3D simulator, CARLA, which provides a fault-free environment for LiDAR-based localization
systems, guaranteeing a fair comparison over different fault detection algorithms. In addition, this platform enables fault
injection at specified time periods, providing a handy tool to evaluate the detection performance regarding different types
of failure in different scenarios.

The remains of this paper are organized as follows. Section 2 presents the fault detection method for the localization system
with GMM noises. We first establish the relationship between residuals of EKF and the multivariate GMM-distributed noises
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(Section 2.1), providing the theoretical basis for developing the transformation method based on GMM assumptions (Section 2.2).
The fault detection algorithm based on Chi-squared tests is then developed in Section 2.3.In Section 3, we apply the proposed
fault detection method to an EKF-based LiDAR/IMU integrated localization system, which mainly includes the construction of
the sensor platform, IMU motion model (3.1), and the 2D LiDAR measurement model (Section 3.2). In Section 4, a simulated
environment is constructed for fairly comparing the performance of fault detection algorithms, and the fault detection performance
of the proposed method is examined in this simulated environment regarding two types of measurement failures. Finally, Section
5 presents a summary.

2 FAULT DETECTION WITH GMM NOISE MODELING

In this section, we present the fault detection algorithm for EKF-based localization systems with noises characterized by
GMMs. We first establish the relationship between noises in the system and the measurement residual in EKF through error
propagation. We prove that the measurement residual is the linear combination of the measurement and process noises through
error propagation, and its distribution is also a GMM. A transformation method is then constructed to transform the residual to a
variable whose distribution approaches a standard multivariate normal (MVN) distribution. Finally, we calculate the Mahalanobis
distance from the transformed variable to a standard MVN distribution, which is taken as the test statistic for a Chi-squared test to
detect faults in the measurements.

2.1 Residual analysis in EKF
2.1.1 Relationship between the residual and noises
Statistical analysis of residuals is vital in model-based fault detection methods for localization and navigation systems (Angus,
2006; Joerger & Pervan, 2016; Puchalski & Giernacki, 2022; J. H. Rife, 2013). A general measurement model in a localization
system can be written as

yk = h (xk) + ηk , (1)

where xk is the system state at time k, yk and ηk are the measurement and noise vector at time k, respectively, and h (·) is the
measurement function. A general state propagation model can be written as

xk = f (xk−1,uk−1,vk−1) , (2)

where f (·) is the state propagation function, uk−1 is the external input at time k− 1, and vk−1 is the process noise at time k− 1.
In an EKF-based localization system, the propagation equations are given by

x̂−
k = f

(
x̂+
k−1,uk−1, 0

)
(3a)

P−
k = Fk−1Pk−1F

T
k−1 +Gk−1Qk−1G

T
k−1 , (3b)

where x̂+
k−1 is the estimated state at time k − 1, x̂−

k is the predicted state at time k, Pk−1 is the covariance matrix of the
estimated state by the EKF at time k− 1, P−

k is the predicted covariance matrix of the estimated state at time k, Fk−1 is the state
transition matrix, Gk−1 is the noise Jacobian matrix with respect to vk−1, and Qk−1 is the covariance matrix of vk−1. If the
EKF receives measurements yk at time k, the Kalman gain Kk is obtained by the following equation (Daum, 2005):

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +Rk

)−1
, (4)

where Rk is the covariance matrix of ηk. The estimated state at time k is obtained by

x̂+
k = x̂−

k +Kk

(
yk − h

(
x̂−
k

))
, (5)

where Hk is the Jacobian matrix of h (xk). The covariance of the estimated state is given by

Pk = (I−KkHk)P
−
k . (6)

The residual corresponding to the measurements at time k is

rk = yk − h
(
x̂−
k

)
. (7)
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By substituting Equation (1) into Equation (7) and taking the first-order Taylor expansion at x̂−
k , we can obtain

rk = Hk

(
xk − x̂−

k

)
+ ηk , (8)

where Hk is the Jacobian matrix of h (·) defined with respect to xk. Substitute Equations (2) and (3) into Equation (8) and apply
the first-order Taylor expansion at the point

(
x̂+
k−1,uk−1, 0

)
,

rk = Hk

(
Fk−1

(
xk−1 − x̂+

k−1

)
+Gk−1vk−1

)
+ ηk , (9)

where Fk−1 is the Jacobian matrix of f (·) defined with respect to xk−1, and Gk−1 is the Jacobian matrix of f (·) defined with
respect to vk−1. In Equation (9), x̂+

k−1 can be obtained by either state propagation or measurement update, both of which are
discussed in the following.

(1) x̂+
k−1 is obtained by state propagation

In this condition, the EKF does not receive external measurements (such as LiDAR measurements). The estimated state is given
by the predicted state, i.e., x̂+

k−1 = x̂−
k−1. Therefore, we have

xk−1 − x̂+
k−1 = xk−1 − x̂−

k−1 . (10)

Substitute Equations (2) and (3) into Equation (10) and take the first-order Taylor expansion at
(
x̂+
k−2,uk−2, 0

)
,

xk−1 − x̂+
k−1 = Fk−2

(
xk−2 − x̂+

k−2

)
+Gk−2vk−2 . (11)

Repeat the operation in Equations (9)–(11), we have

rk = Hk

 m∏
i=1

Fk−i

(
xk−m − x̂+

k−m

)
+

m∑
i=2

i−1∏
j=1

Fk−jGk−ivk−i
+Gk−1vk−1

+ ηk , (12)

where m is the discrete time interval between the last measurement and the current measurement. To simplify the expression, we
set the higher-order terms inside the brackets (i.e., terms with the number of matrix multiplications larger than 2) to zero and obtain

rk = HkFk−1Gk−2vk−2 +HkGk−1vk−1 + ηk . (13)

(2) x̂+
k−1 is obtained by measurement update

In this case, we have the following expression by substituting Equation (5) into Equation (9):

xk−1 − x̂+
k−1 = xk−1 −

(
x̂−
k−1 +Kk−1

(
yk−1 − h

(
x̂−
k−1

)))
. (14)

Substituting Equation (1) into Equation (14) and taking the first-order Taylor expansion at x̂−
k−1, we have

xk−1 − x̂+
k−1 = (I−Kk−1Hk−1)

(
xk−1 − x̂−

k−1

)
−Kk−1ηk−1 . (15)

Therefore,
rk = HkFk−1 (I−Kk−1Hk−1)

(
xk−1 − x̂−

k−1

)
−HkFk−1Kk−1ηk−1 +HkGk−1vk−1 + ηk .

(16)

If we initialize the Kalman filter at t = k − 1, we have E[x̂−
k−1] = xk−1. x̂−

k−1 is the unbiased estimator of xk−1 and its
distribution can be represented by a Gaussian distribution N (xk−1,π0), where π0 is the covariance matrix of x̂−

k−1. Define

ek−1 = xk−1 − x̂−
k−1 , (17)

and then we have ek−1 ∼ N (0,π0). Equation (16) can be written by

rk = HkFk−1 (I−Kk−1Hk−1) ek−1

−HkFk−1Kk−1ηk−1 +HkGk−1vk−1 + ηk .
(18)
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As can be seen, rk is the linear combination of ηk, ηk−1, vk1 , and ek−1. Assuming that the covariance of the initial state, i.e.,
π0, is considerably small, we have ek−1 ≈ 0. Then, HkFk−1 (I−Kk−1Hk−1) ek−1 only has limited impacts on Equation (18).
If we know the ground truth of xk−1 (it is possible in a simulation environment, as illustrated in Section 4), we can initialize the
Kalman filter at t = k − 1 with x̂−

k−1 = xk−1. Then rk approaches to a linear combination of ηk, ηk−1, and vk1
:

rk = ηk −HkFk−1Kk−1ηk−1 +HkGk−1vk−1 . (19)

This perfect initialization can be approximately regarded as the setting of E[x̂−
k−1] = xk−1 with a very small π0.

If we do not initialize the Kalman filter at t = k − 1, we can repeat Equations (7)-(19) until the first initialization of the EKF,

E[x̂−
1 ] = x1 . (20)

We will find that rk approaches to a linear combination of vk−1, . . . ,v1 and ηk,ηk−1, . . .η1, and their coefficients are related to
Hk,Hk−1, . . .H1, Fk−1, ...,F1, Gk−1, ..G1, and Kk−1, ..K1.

2.1.2 Distribution of the residual
To focus on the development of the fault detection algorithm, we simply take the case that x̂+

k−1 is obtained by the state propagation
for further analysis and set the higher-order terms (>2) to zero. Then Equation (13) is the final expression of residual at time k. Let

Vk−1 = HkGk−1 , (21)

and
Nk−1 = HkFk−1Gk−2 . (22)

Then Equation (13) can be written as
rk = Vk−1vk−1 +Nk−1vk−2 + ηk . (23)

In this study, vk−1, vk−2, and ηk are assumed to be non-Gaussian noises, and we use the multivariate GMM to model them.
Assuming vk−1 and vk−2 are independent and identically distributed (i.i.d.), we can obtain the PDF of η and v by

fη (x) =

m1∑
j=1

pηjN
(
x
∣∣µη

j ,π
η
j

)
(24a)

fv (x) =

m2∑
j=1

pvjN
(
x
∣∣µv

j ,π
v
j

)
, (24b)

where
m1∑
j=1

pηj = 1,
m2∑
j=1

pvj = 1; m1 and m2 are the number of Gaussian modes for η and v, respectively; pηj and pvj are the

mixture weight (i.e., the prior probability of each Gaussian mode); N
(
·
∣∣µη

j ,π
η
j

)
and N

(
·
∣∣µv

j ,π
v
j

)
are probability density

functions of each Gaussian mode; µη
j ∈ Rn1 and µv

j ∈ Rn2 are means of each Gaussian mode; πη
j ∈ Rn1×n1 and πv

j ∈ Rn2×n2

are covariance matrices of each Gaussian mode; n1 is the dimension of the measurement noise, and n2 is the dimension of process
noise. Inspired by the work of Hashemi and Ruths (2019), rk can be proved to be multivariate GMM distributed by applying the
convolution theorem on the characteristic function of each component of the residual (refer to Appendix B for details):

frk (x) =

m2∑
a=1

m2∑
b=1

m1∑
c=1

pabcN (x|µabc,πabc) , (25)

where

pabc = pvap
v
bp

η
c (26a)

µabc = Vk−1µ
v
a +Nk−1µ

v
b + µη

c (26b)
πabc = Vk−1π

v
aV

T
k−1 +Nk−1π

v
bN

T
k−1 + πη

c . (26c)
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2.2 Transformation methods
2.2.1 Transformation based on GMM assumptions
Section 2.1 illustrates that the residual is a multivariate GMM-distributed random variable. To align with the architecture of
the Chi-squared detector, we transform the residual to a new random variable by subtracting its total mean and subsequently
pre-multiplying its principal square root matrix of the total covariance (Hashemi & Ruths, 2019)

Tg = Σ−1/2 (rk − µ) , (27)

where µ is the total mean and Σ−1/2 is the principal square root matrix of the total covariance (Σ) of the residual, respectively.
According to the law of total covariance (Weiss et al., 2006), µ and Σ are given by

µ =

m2∑
a=1

m2∑
b=1

m1∑
c=1

pabcµabc (28a)

Σ =

m2∑
a=1

m2∑
b=1

m1∑
c=1

pabcπabc + (µ− µabc) (µ− µabc)
T
. (28b)

In Appendix C, we demonstrate that the transformed variable has a distribution that approaches the standard MVN distribution
when each Gaussian component in the GMM-distributed residual has a small difference in the covariance. Therefore, we limit
the proposed transformation method to specific applications where the measurement error can be modeled by GMM and the
covariance of each component is similar.By setting the number of the Gaussian components of the GMM to one, the above
transformation formulation can be easily extended to situations in which the residual is formulated as Gaussian distribution (Da,
1994; Liu et al., 2017).

2.2.2 Transformation based on Gaussian assumptions
To evaluate the impact of GMM noise modeling on the fault detection performance, we also establish a baseline transformation
method that takes the Gaussian assumption about the noises. Specifically, the measurement noise η0

k and the process noise v0
k at

time k are modeled as zero-mean Gaussian noises as follows:

η0
k ∼ N

(
0, π0

η

)
(29a)

v0
k ∼ N

(
0, π0

v

)
, (29b)

where π0
η ∈ Rn1×n1 and π0

v ∈ Rn2×n2 are the covariance matrices and can be obtained by calculating the variance of samples
generated from the noise distribution in Equation (24) through the Monte-Carlo simulation. Following the derivation in Section
2.1, the measurement residual at time k is given by

r0k = Vk−1v
0
k−1 +Nk−1v

0
k−2 + η0

k . (30)

Let Σ0 = Vk−1π
0
vV

T
k−1 +Nk−1π

0
vN

T
k−1 + π0

η , and then the distribution of the measurement residual is given by

fr0k (x) = N
(
x
∣∣∣0,Σ−1/2

0

)
, (31)

which is a zero-mean Gaussian distribution. Similar to Equation (27), r0k can be transformed to a standard MVN distributed
random variable as

T0
g = Σ

−1/2
0 r0k . (32)

Figure 1 plots the transformation process of the residual based on two different assumptions. Obviously, the substantial difference
between the two transformation methods lies in the way of modeling noises. This feature is quite important, which enables us to
develop a fault detection method with GMM noise modeling that shares the same methodology as the conventional Gaussian
method, providing a way to fairly evaluate the effects of different noise modeling on fault detection tasks in localization systems.

2.3 Fault detection based on Chi-squared test
The two transformations in Section 2.2, though different, yield the standardized measurement residual that is assumed to have a
standard MVN distribution. The n1 × 1 vector Tg can be written as

Tg = [Tg,1, Tg,2, . . . , Tg,n1
] , (33)
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F I G U R E 1 The demonstration of transformation methods based on GMM assumptions and Gaussian assumptions, respectively.

where Tg,1, Tg,2,..., Tg,n1
are assumed to be mutually independent standard normal random variables. We can construct the

following test statistic tg ,
tg = TT

g Tg = T 2
g,1 + T 2

g,2 + . . .+ T 2
g,n1

. (34)
Since Tg,1, Tg,2,..., Tg,n1 are mutually independent, tg follows the Chi-squared distribution with n1 degrees of freedom (DOF).
From another perspective, Equation (34) represents the square of the Mahalanobis distance of Tg from the standard MVN
distribution, which is known to have the same Chi-squared distribution. Similarly, we can construct the test statistic t0g in the
context of the Gaussian assumption as

t0g = T0
g
T
T0

g . (35)
Before performing the hypothesis test with the constructed test statistic, we give a brief introduction to the Chi-squared distribution.
Its cumulative distribution function (CDF) is given by

F (x; k) =
γ
(
k
2 ,

x
2

)
Γ
(
k
2

) , (36)

where γ(·) is the lower incomplete gamma function, Γ(·) is the gamma function, and k is the degree of freedom. For a given value
TD ∈ R, the probability of the Chi-squared statistic less than TD is given by P (x < TD) = F (TD; k), and the associated
p-value is given by 1− F (TD; k). The value of TD and the corresponding p-value are interrelated, and their association can
be determined through tables of the Chi-squared distribution (Fisher & Yates, 1953). The Chi-squared test for fault detection
associated with the test statistic tg at a given significance level α is

H1 : tg > TDα (37a)
H0 : tg ≤ TDα , (37b)

where TDα is determined by
P (tg > TDα| H0) = α . (38)

A similar hypothesis test can be conducted with the test statistic t0g, which is defined by the similar formulations in Equations
(37)–(38) and is omitted for presenting for the sake of clarity. For convenience, we name the fault detection method based on tg
as the total Gaussian-GMM method, and we name the method based on t0g as the Gaussian method.

In Equation (38), the significance level α can also be interpreted as the desired false alarm rate in the fault detection context when
the assumption that Tg has a standard MVN distribution is valid. However, the assumption is unrealistic in real-world applications.
For example, the GMM cannot perfectly model the non-Gaussian noises in the LiDAR measurement. Another issue is that the
elements in the residual vector could be correlated, which violates the assumption and eventually results in the degradation of the
fault detection performance. Therefore, criteria are required to examine the real performance of the fault detection results. In this
study, two criteria, including the false alarm rate (FAR) and the fault detection rate (FDR) in a period, are formulated as

FAR =
nFP

nFP + nTN
(39a)

FDR =
nTP

nTP + nFN
, (39b)

where nTP is the number of faulty events that are classified as faulty (true positive), nTN is the number of fault-free events that
are classified as normal (true negative), nFP is the number of fault-free events that are classified as faulty (false positive), and
nFN is the number of faulty events that are classified as normal (false negative).
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3 THE APPLICATION IN IMU/LIDAR INTEGRATED LOCALIZATION SYSTEM

This section presents the application of the proposed fault detection in an IMU/LiDAR integrated system. The architecture of
the fault detection process in the localization system is illustrated in Figure 2. A LiDAR/IMU integrated localization system is
constructed by utilizing EKFs (Daum, 2005), where the state propagation equation is constructed by the kinematic model of the
IMU motion, and the measurement function is constructed by matching the extracted line features from seven 2D LiDAR points
to the plane in the prior map. Notably, 2D LiDARs possess fewer moving parts and components, making them more reliable and
easier to maintain in comparison to 3D LiDARs. This characteristic not only helps to prevent hardware faults but also simplifies
the development and evaluation of fault detection methods. In addition, 2D LiDARs are low-cost but can only provide limited
ranging measurements. As a result, it is of great importance to reliably detect faulty measurements from 2D LiDAR. In this
EKF-based localization system, the process and measurement noises are modeled as the multivariate GMM. As illustrated in
Section 2, the nominal residual (defined as the residual of a fault-free system) is proved to be multivariate GMM. Therefore, we
leverage the law of total covariance to transform the residual into a variable whose distribution approaches a standard MVN
distribution. Finally, we calculate the Mahalanobis distance from the transformed variable to a standard MVN distribution, which
is taken as the test statistic for a Chi-squared test to detect faults in the measurements.

The sensor platform of the localization system is shown in Figure 2(b), where an IMU is placed at the chassis and seven 2D
LiDARs are distributively placed around the vehicle. The center location and the elevation angle of each LiDAR in the IMU
frame ({I}) are given in the embedded table. Instead of defining seven LiDAR frames for each 2D LiDAR, we only define a
single LiDAR frame ({L}) that is fixed at the center of the fourth LiDAR for clarity. As the seven 2D LiDARs have a similar
measurement model, such a definition can make the main idea clearer without loss of generality. Following this definition, we
denote LpI as the translation from{I} to {L} and LqI as the rotation (the rotation matrix is L

I R) from {I} to {L}. IpL and I
LR

are the extrinsic calibration parameters calibrated in the setup stage of the system. Note that the extrinsic calibration parameters
for each 2D LiDAR are different and are affected by the center location and the elevation angle of the 2D LiDAR plane.

The state vector x of the system is defined as follows:

x =
[
GpT

I ,
GvT

I ,
IqT

G,b
T
a ,b

T
g

]T
, (40)

where GpI and GvI are the position and velocity vectors of IMU frame ({I}) in the world frame ({G}), IqG = [qw, qx, qy, qz]
T

denotes the rotation from {G} to {I} in terms of quaternion, and bT
a and bT

g are biases of the accelerometer and gyroscope
measurements. In addition, the rotation matrix associated with IqG is denoted by I

GR. The world frame is fixed at the center of
the pre-built point cloud map in the East-North-Up (ENU) coordinate system. For clarity, all symbols used in this chapter are
listed in Appendix A. The following sections briefly introduce the motion model and the measurement model of the IMU/LiDAR
integrated system, and, more importantly, determine the exact form of F, G, and H, which are used for constructing the test
statistic for the fault detection process.

3.1 Motion model
The kinematic model of the IMU motion in {G} is adopted to propagate the vehicle state (Lefferts et al., 1982). The discrete-time
state propagation equation is given by

xk = f (xk−1,uk−1,vk−1) =



GpI,k−1 +
GvI,k−1∆t+ 1

2

(
G
I R̂k−1 (am,k−1 − ba,k−1 − na) +

Gg
)
∆t2

GvI,k−1 +
(
G
I R̂k−1 (am,k−1 − ba,k−1 − na) +

Gg
)
∆t

exp
(
∆t
2 Ω [wm,k−1 − bg,k−1 − ng]

)
IqG,k−1

ba,k−1 + nwa∆t
bg,k−1 + nwg∆t

 , (41)

where ∆t is a short time period; GpI,k−1, Gvk−1, IqG,k−1, ba,k−1, bg,k−1 are system states at the discrete time k − 1; am,k−1

and wm,k−1 are the acceleration and gyroscope measurements, respectively; na and ng are the noises of acceleration and
gyroscope measurements, respectively; nwa and nwg are zero-mean Gaussian white noise; vk−1 =

[
nT
a ,n

T
g ,n

T
wa,n

T
wg

]T is the
process noise vector at time k − 1; G

I R̂k−1 represents the estimation of the vehicle orientation at time k − 1; and Ω[·] is a 4×4
skew symmetric matrix:

Ω [w] =

[
− [w]× w
−wT 0

]
, (42)
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(a)

(b)

F I G U R E 2 (a) The architecture of fault detection in the LiDAR/IMU integrated localization system; (b) The sensor platform of the
localization system. “Ele.” is the abbreviation of “Elevation angle”.

where [·]× denotes the standard vector cross-product.

By linearizing (41) with respect to xk−1 and vk−1 respectively, we can obtain the state transition matrix Fk−1 and the noise
Jacobian matrix Gk−1 as follows:

Fk−1 =


I3 I3∆t 0 − 1

2
G
I R̂k−1∆t2 0

0 I3 0 −G
I R̂k−1∆t 0

0 0
∂g(I q̂G,k−1,wm,k−1)

∂IqG,k−1
0

∂g(I q̂G,k−1,wm,k−1)
∂wGI,k−1

0 0 0 I3 0
0 0 0 0 I3

 (43a)

Gk−1 =


− 1

2
G
I R̂k−1∆t2 0 0 0

−G
I R̂k−1∆t 0 0 0

0
∂g(I q̂G,k−1,wm,k−1)

∂wGI,k−1
0 0

0 0 I3∆t 0
0 0 0 I3∆t

 , (43b)

where ∂g(I q̂G,k−1,wm,k−1)
∂IqG,k−1

and ∂g(I q̂G,k−1,wm,k−1)
∂wGI,k−1

are derived in Appendix E.2.
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3.2 Measurement model
The laser scan plane of 2D LiDARs intersects with several planes. The intersection is called as the line segment, which is fitted by
a set of 2D LiDAR points, as shown in Figure 3(a). We adopt the method from Pfister et al. (2003) to extract line segments from
raw 2D LiDAR measurements and find their associated planes. Details can refer to Appendix D.2. The 2D LiDAR measurement
model is constructed by finding the shortest vector in the laser scan plane from the origin of {G} to the plane (Hesch et al., 2010;
Zhao & Farrell, 2013), as illustrated in Figure 3(b). Assuming that the laser scan plane is intersected with the plane Πi at line
Lξ

⊥
i in {L}, we can find the shortest vector Lxi = ρi

Lξi in the LiDAR scan plane from the origin of {L} to Πi, where Lξi is the
unit vector, ρi is the length of Lxi, and the point M is the intersection of Lxi and Lξ

⊥
i . The laser beam Lxi in the scan laser

plane can be represented by ranging and bearing parameters (ρi, ϕi) in the polar coordinate system, as shown in Figure 3(c).
Alternatively, Lxi can also be written as Lxi = [ρi cosϕi ρi sinϕi 0]

T in {L}. The shortest vector from the origin of {G} to the
plane Πi is denoted by di

Gπi and is intersected with Πi at point N , where Gπi is the normal of the plane in {G} and di is the
length of diGπi. The vector from M to N in {G} is denoted by Gti. The measurement model can be written as

ϕi = hi
1 (x) +

∼
ϕi = arctan

(
sgn

(
Ldi

) ai2
ai1

)
+

∼
ϕi (44a)

ρi = hi
2 (x) +

∼
ρi =

∣∣Ldi∣∣√
ai1

2
+ ai2

2
+

∼
ρi (44b)

Ldi = di − GπT
i

(
GpI +

G
I R

IpL

)
(44c)

Lai =
L
GR

Gπi =
[
ai1, a

i
2, a

i
3

]T
, (44d)

where the ith measurement yi = [ϕi, ρi]
T is the ranging and bearing parameters associated with the shortest vector in the laser

plane intersected with Πi,
∼
ϕi and ∼

ρi are measurement noises, and sgn(·) is the sign function. Details can refer to Appendix D.1

(a) (b) (c)

F I G U R E 3 (a) A demonstration of extracting line segments from 2D LiDAR points; (b) The 2D LiDAR measurement model is constructed
by finding the shortest vector in the laser scan plane from the origin of {L} to the plane Πi; (c) The laser plane with the polar coordinate system.

Let hi (xk) =
[
hi
1 (xk) hi

2 (xk)
]T be the measurement function of ith measurement at time k , ηi,k =

[
∼
ϕi,k

∼
ρi,k

]T
be the

associated measurement noise, x̂−
k =

[
Gp̂−T

I ,Gv−T

I , I q̂−T

G , b̂T
a , b̂

T
g

]T
be the predicted state, and Hi

k be the Jacobian matrix of
hi (xk) defined with respect to xk and evaluated at x̂−

k :

Hi
k =

∂hi
(
x̂−
k

)
∂xk

. (45)
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As proved in Appendix E.3, Hi
k is given by

Hi
k =

 01×3 01×3
1

µ̂−
i,k

λ̂−T

i,k
L
I RJ∗

q

(
I q̂−

G,k,
Gπi,k

)
01×6

−sgn
(
Ld̂−i,k

) GπT
i,k√

µ̂−
i,k

01×3 −sgn
(
Ld̂−i,k

) GπT
i,k√

µ̂−
i,k

Jq

(
I q̂−

G,k,
IpL

)
+

∣∣∣Ld̂−i,k∣∣∣ κ̂T
i,k

L
I RJ∗

q

(
I q̂−

G,k,
Gπi,k

)
01×6

 , (46)

where
µ̂−
i,k = ai−

2

1 + ai−
2

2 ,λ−T

i,k = sgn
(
Ld̂−i,k

) [
−âi−2 , âi−1 , 0

]
,

κ̂T
i,k = −µ̂

− 3
2

i,k

[
âi−1 , âi−2 , 0

]
, I â−i,k = L

I R
I
GR̂

−
k
Gπi,k =

[
âi−1 , âi−2 , âi−3

]T
.

(47)

For multiple measurements yk =
[
yT
1,k,y

T
2,k, . . . ,y

T
n,k

]T
at time k, the measurement function is written as

yk = h (xk) + ηk , (48)

where

h (xk) =
[
h1 (xk)

T
, h2 (xk)

T
, . . . , hn (xk)

T
]T

(49a)

ηk =
[
ηT
1,k,η

T
2,k,, . . . ,η

T
n,k

]T
, (49b)

and n is the total number of measurements at time k. Then the Jacobian matrix of h (xk) can be written as

HT
k =

[
H1

k
T
,H2

k
T
, . . .Hn

k
T
]T

. (50)

It is worth noting that the linearization process presented here is quite different from the work of Hesch et al. (2010) and Zhao
and Farrell (2013). In this work, we linearize the measurement function at the nominal state in terms of position vector and
quaternion, as shown in Equations (E27) and (E41) in Appendix E.3, which is more direct and intuitive than the approach that
performs the linearization at the error state (Hesch et al., 2010; Zhao & Farrell, 2013). In addition, linearization at the nominal
state is beneficial to establish a clear relationship between the measurement noise and the state, as well as the relationship between
the measurement noise and the residual, both of which are shown in Section 2.1.

4 NUMERICAL EXPERIMENTS

4.1 Construction of the simulation platform
In this study, we build a simulated urban environment based on the 3D simulator, CARLA (Dosovitskiy et al., 2017). Through
automatic and manual checking, we can create a fault-free scenario in the simulated and inject specified faults at a specified time.
The main reasons for constructing the simulation platform are listed below:

1. The measurement noise of LiDAR is uncontrollable in the real world. In order to simulate GMM-distributed noises and
ensure the reproducibility of experiments, it is utmost to have a fully controllable environment to examine the performance
of the proposed method.

2. Faults in real datasets are unpredictable. To our best knowledge, no method can always detect all faults. In order to control
the type of faults and the time when faults occur, it is essential to use a simulation tool to generate faults of interest at a
given time intentionally.

Some snapshots of the constructed simulation platform are shown in Figure 4. The simulated vehicle is equipped with seven 2D
LiDARs and a simulated IMU sensor, as shown in Figure 4(b). The measurements of 2D LiDARs are simulated by the ray-cast
technology, which can accurately reflect the real position of the point hit by each laser beam. Users can add extra noises to the 2D
LiDAR measurements. The simulated sensors can directly output readings of physical parameters (such as angular velocity and
acceleration) of the vehicle through CARLA. Additional noises are incorporated into the readings with customized configurations,
eventually simulating the IMU sensor. In the experiment, the noise of 2D LiDAR measurements and IMU measurements are
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F I G U R E 4 The simulated platform. (a) The simulated urban environment is constructed based on CARLA, where the designed track of the
ground vehicle is marked as the red line; (b) The simulated vehicle moves along the road by manual control or programmed control; (c) All
faces of 3D objects in the simulated environment can be extracted and represented correctly by Blender with semi-automatic checking.

configured to be multivariate GMM-distributed. Detailed configuration will be described in Section 4.2. Recall Section 3.2
that the 2D LiDAR measurement model requires pre-stored plane information. In the simulated platform, it is much easier to
extract this information without introducing additional errors. We accomplish this by exporting the 3D objects in the simulated
environment to Blender (Community, 2018), an open-source 3D modeling and rendering software, to extract the faces of all
objects of interest, such as buildings, walls, and roads. As shown in Figure 4(c), the face (plane) information, including normal,
center, and vertices, can be extracted correctly by automatic operation and manual checking in Blender.

4.2 Setup of the experiment
Based on the constructed simulation platform, a ground vehicle is programmed to move along the track in Figure 4(a) at a constant
speed of 30 km/h. The operation time is 57 s, and the length of the trajectory is 314.3m. Figure 4(a) plots the simulated trajectory.
In the experiment, the output frequency of the LiDARs is 10Hz, and LiDAR measurement noises are configured to have the
multivariate GMM distribution. To set the covariance of the 2D LiDAR measurement noises, we refer to the research conducted by
the team from Nagoya University (Carballo et al., 2020), which evaluated the performance of mainstream LiDAR products. Their
work found that the root-mean-square error of the ranging measurements varies roughly from 0.01m to 0.08m within a measured
distance of 100m. Since the bearing measurements can be directly obtained by referring to the rotation frequency of LiDAR, we
assume that the noise of bearing measurements is relatively small. In this study, we use the GMM to set the distribution of the

measurement noise ηi =

[
∼
ϕi,

∼
ρi

]T
. The probability density function of the noise ηi in each 2D LiDAR measurement is given by

fηi(·) = p1N
([

0
µ1

]
,

[
0.00032 0

0 δ21

])
+ p2N

([
0
µ2

]
,

[
0.00032 0

0 δ22

])
, (51)

where the bearing noise is set as zero-mean Gaussian with a standard deviation of 0.0003 rad, and the range noise is determined
by p = [p1, p2], µ = [µ1, µ2] and δ = [δ1, δ2]. In this experiment, we evaluate four settings of p, µ and δ, as shown in Table 1.
Taking the noise setting N1 as the baseline, we explore scenarios including reducing the difference between mixture weights
(N2), diminishing the separation between components (N3), and lessening the disparity between components’ variance (N4). The
probability density function (PDF) of range noises in four settings is plotted in Figure 5. In addition, a degraded case that the
range noise is generated from a Gaussian distribution is also evaluated, as presented in Table 1.
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F I G U R E 5 The distribution of range noises of 2D LiDAR measurements in four GMM settings.

TA B L E 1
Settings of Range Noises of the LiDAR Measurement

Noise Setting Mixture p Mean µ (m) Std. δ (m)

N1 [0.9,0.1] [-0.01,0.03] [0.02,0.06]

N2 [0.8,0.2] [-0.01,0.03] [0.02,0.06]

N3 [0.9,0.1] [0.00,0.03] [0.02,0.06]

N4 [0.9,0.1] [-0.01,0.03] [0.03,0.04]

Gaussian - 0 0.03

TA B L E 2
IMU Parameters

Sensor Parameters Value

Gyroscope
Bias 2 ◦/hr

Noise 0.15 ◦/
√

hr

Accelerometer
Bias 3.6 µg

Noise 0.012 m/sec/
√

hr

TA B L E 3
LiDAR Range Measurement Failure Coefficients

Failure Type Group Coefficient Value Failure Time

Step failure
A1 Amplitude 0.1m

4–20 s
A2 Amplitude 0.25m

Slope failure
B1 Rate 0.05m/s

34–44 s
B2 Rate 0.1m/s

In this study, we assume that each LiDAR measurements are mutually independent. Therefore, for n LiDAR measurements, the
PDF of the noise can be expressed as follows:

fη(·) = p1N


0...
0


2n×1

,

M1 · · · 0
...

. . .
...

0 · · · M1


+ p2N


0...
0


2n×1

,

M2 · · · 0
...

. . .
...

0 · · · M2


 , (52)



xxx

where M1 and M2 are the covariance matrix of each Gaussian component in the single measurement case, as shown in Equation
(51). On the other hand, the probability density function of the process noise v =

[
nT
a ,n

T
g ,n

T
wa,n

T
wg

]T ∈ R12 is set as zero-
mean multivariate Gaussian distribution with the parameters shown in Table 2, which are simulated based on the MEMS-based
IMU (Devices, 2018). The output frequency of the simulated IMU is 100Hz.

In the EKF setting, we use a perfect initial pose to initialize the EKF. In other words, EKF is assumed to be converged at the
initialization and will keep being converged in the following time steps if receiving fault-free measurements. This is a strong
assumption, however, applicable in the simulated environment. By making such an assumption, we can focus on the analysis of
the residual instead of the convergence of the localization solution. In this study, the standard deviation of the estimated position
is set to be 0.05m, and the estimated orientation represented with quaternion is set as 0.02 at time k, respectively. To set R and
Q, we calculate the total covariance of η and v and set their non-diagonal elements to zero.

In this study, we conducted simulations for two types of single measurement failure, including the step failure and the slope
failure, to examine the fault-detection performance across varied scenarios. The coefficients relating to these failures are listed in
Table 3. In particular, the slope failure denotes a fault characterized by the escalating magnitude over time (R. Wang et al., 2016).

4.3 Performance of localization
In the fault-free simulated environment, we examine the localization performance of the proposed LiDAR/IMU integrated
localization system. Figure 6 plots the absolute translation error of the positioning results under five different settings of
measurement noise. It is obvious that the localization performance remains relatively consistent across all noise settings.
Throughout most epochs, the absolute translation error is below 0.1m. In addition, the mean absolute translation error is around
0.06m during the whole period. However, the absolute translation error shows an increase during the period of 23–30 s and
45–48 s, coinciding with the vehicle’s significant turns which are depicted in the thumbnail of Figure 6. This occurrence can be
attributed to the lack of features at the turning locations, resulting in an insufficient number of measurements and thus poor
observability (Joseph & Murthy, 2019; Sanandaji et al., 2014). Additional sensors, such as cameras and radar, can be employed to
capture environmental information to improve the localization performance at these locations. However, such enhancements fall
beyond the scope of this work.

4.4 Performance of fault detection
In the experiment, we evaluate the fault detection performance of the proposed method with five settings of measurement
noise, four of which are generated from a multivariate GMM distribution, and the remained one is the degraded case that the
measurement noise is generated from a Gaussian distribution.

4.4.1 Step failure detection analysis
Table 4 shows the fault detection results with the step failure when the desired false alarm rate α is set as 0.05. In group A2,
the fault detection rate (FDR) of the proposed total Gaussian-GMM method exceeds 85% under each noise setting, which is
significantly larger than that of the Gaussian method. Particularly within the noise setting N2, the FDR of the total Gaussian-GMM
method surpasses that of the Gaussian method by 30%, showing the most substantial improvement among all noise configurations.
As illustrated in Section 4.2, N2 represents the scenario of reducing the difference between mixture weights compared to the
baseline setting N1, suggesting that the influence of the Gaussian component with a large variance on the noise distribution
is amplified. Compared to the Gaussian method, the total Gaussian-GMM method can effectively capture such change in the
characteristics of the noise distribution, thereby exhibiting better detection performance. Nevertheless, the preeminence of the
total Gaussian-GMM method in terms of FDR is accompanied by the concession of an ascending false alarm rate (FAR). In all
noise settings, the FAR of the total Gaussian-GMM method slightly increases but is still comparable to the desired false alarm
rate (α = 0.05). Since reducing the missed detection rate is typically prioritized over false positives for multi-sensor navigation
systems, the sacrifice in FAR could be accepted to a certain extent.
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F I G U R E 6 The absolute translation error of the positioning results in the fault-free simulated environment.

TA B L E 4
Statistical Results of False Alarm Rate (FAR) and Fault Detection Rate (FDR) with Step Failure (α = 0.05)

Range Noise Setting Failure Group
Total Gaussian-GMM Method Gaussian Method

FAR (%) FDR (%) FAR (%) FDR (%)

N1
A1

7.26
21.88

5.03
20.00

A2 94.38 78.13

N2
A1

6.70
23.13

3.63
17.50

A2 85.00 65.63

N3
A1

5.87
21.25

5.59
20.63

A2 96.25 92.50

N4
A1

2.79
20.00

2.51
15.00

A2 85.00 73.75

Gaussian N
(
0, 0.032

) A1
3.07

18.75
3.07

18.75

A2 93.13 93.13

In group A1, both methods yield a substantially lower FDR compared to that in group A2. This is because the amplitude of
the injected faults in group A1 is notably smaller than that in group A2, thereby hindering both methods’ ability to detect a
fault. Despite this challenge, the total Gaussian-GMM method still exhibits a distinct advantage in detecting faults, showing a
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(a) (b)

F I G U R E 7 Fault detection results of (a) the total Gaussian-GMM method and (b) the Gaussian method with noise setting N1 for step
failure (group A2). In the diagnosis result plot, “1” indicates fault and “0” indicates normal. The failure period is 4–20 s, which is marked by
the shaded area.

much higher FDR than the Gaussian method. This result implies that the total Gaussian-GMM method has greater sensitivity to
small faults. In the degraded case that measurement noise is generated from a Gaussian distribution, the total Gaussian-GMM
method exhibits exactly the same performance as that of the Gaussian method, a result that is anticipated. The detection results
for α = 0.01 and α = 0.001 are listed in Appendix F, both of which concur with the findings outlined in Table 4.

Figure 7 plots the statistic curve and the diagnosis result of the two methods with noise setting N1 for step failure A2. The number
of valid line measurements from the LiDARs is also plotted in the figures, and the Chi-squared test is only applied when the
number of line measurements is no less than 12. As can be seen, the Chi-squared statistics of the total Gaussian-GMM method
substantially exceed those of the Gaussian method over the failure period 4–20 s. In addition, the diagnosis results in the figures
show that the total Gaussian-GMM method switches less frequently between fault and normal states within the failure period,
suggesting that the total Gaussian-GMM method is more stable in the fault detection tasks with step failures.

4.4.2 Slope failure detection analysis
The detection results with the slope failure are listed in Table 5, where the delayed time refers to the interval between the
commencement of the fault injection and the first stable detected epoch (i.e., the subsequent diagnosis consistently declares a fault
throughout the remaining injection period). In group B1, the total Gaussian-GMM method demonstrates greater sensitivity to
slope failure than the Gaussian method. In noise setting N1, N2, and N4, the detection delay for the total Gaussian-GMM method
is reduced by 17–23% compared to the Gaussian method. Note that the delayed time of both methods is the same in the noise
setting N3, which represents the case of small separation between components. Recall the transformation method based on the law
of total covariance in Section 2.2.1, and it is obvious that the second term of the total covariance tends to be zero if all components
have a similar mean. In such cases, the total covariance of the GMM distribution approaches the variance of the fitted Gaussian
distribution; consequently, the two fault detection methods will exhibit similar performance. This phenomenon is also verified in
the step failure experiments under the same noise setting N3, where the total Gaussian-GMM method exhibits only a 3% and 4%
increase in FDR compared to the Gaussian method for groups A1 and A2, respectively. Regarding group B2, similar observations
are made, with the total Gaussian-GMM method generally exhibiting a shorter delayed time than the Gaussian method. In the
Gaussian noise setting, the total Gaussian-GMM method degrades to the Gaussian method, yielding the same delayed time.

The statistic curve and the diagnosis result with noise setting N1 for slope failure B1 are depicted in Figure 8. It is observed that
the Chi-squared statistics of both methods consistently rise during the failure period 34–44 s because the magnitude of the fault
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increases with time. One distinct difference between the two methods is observed through the diagnosis curve that the diagnosis
state of the Total Gaussian-Gaussian method switches more frequently during the unstable period than that of the Gaussian
method, indicating that the Total Gaussian-Gaussian method is more sensitive to small faults. However, such sensitivity will lead
to an increase in false detection epochs during the normal period.

TA B L E 5
Delayed Time of Fault Detection with Slope Failure (α = 0.05)

Range Noise Setting Failure Group Total Gaussian-GMM Method Gaussian Method

N1
B1 3.5 s 4.6 s

B2 1.8 s 1.9 s

N2
B1 4.2 s 5.3 s

B2 2.1 s 2.6 s

N3
B1 3.3 s 3.3 s

B2 1.7 s 1.7 s

N4
B1 4.3 s 5.2 s

B2 2.2 s 2.8 s

Gaussian N
(
0, 0.032

) B1 5.3 s 5.3 s

B2 1.8 s 1.8 s

(a) (b)

F I G U R E 8 Fault detection results of (a) the total Gaussian-GMM method and (b) the Gaussian method with noise setting N1 for slope
failure (group B1). In the diagnosis result plot, “1” indicates fault and “0” indicates normal. The failure period is 34–44 s, which is marked by
the shaded area.
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5 CONCLUSION

This study proposes a fault detection method for an EKF-based localization system with GMM noises. The measurement and
process noises are then modeled as the multivariate GMM distribution, and the residual of the EKF is derived as the linear
combination of these noises, which is shown to be multivariate GMM distributed. Based on the law of total covariance, the
residual is transformed into a variable whose distribution approximates a standard MVN distribution. The Mahalanobis distance
from the transformed variable to a standard MVN distribution is calculated and taken as the test statistic for a Chi-squared test to
detect potential faults. The proposed fault detection method is then applied to a LiDAR/IMU integrated localization system based
on the EKF, where the measurement function is constructed by fitting line measurements from seven 2D LiDAR points to the
plane, and the state propagation is achieved by the kinematic model of the IMU motion.

In a simulated urban environment constructed based on the 3D simulator, CARLA, we examine the detection performance of the
proposed method regarding two types of measurement failures, each of which is examined under four types of GMM noise settings.
In the step failure experiment, the fault detection rate of the proposed total Gaussian-GMM surpasses that of the conventional
Gaussian method by as large as 30%, demonstrating the effectiveness of the proposed method in detecting small faults. On the
other hand, the detection delay for the total Gaussian-GMM method is reduced by 17–23% compared to the Gaussian method
within three of four noise settings in the slope failure experiment, demonstrating the greater sensitivity of the proposed method
to the gradually changing failure. Since the Total-Gaussian GMM method shares the same fault detection methodology with
the Gaussian method, the difference in the detection performance between the two methods is consequently attributed to the
difference in noise modeling. Therefore, the experiment results also suggest that GMM-based noise modeling is beneficial for
fault detection tasks in localization systems with non-Gaussian noises, encouraging researchers to explore this direction.

This study has several limitations, which also point out future research directions. In deriving the relationship between the residual
and noises, we ignore high-order terms to reduce the computation load. However, this approximation would underestimate the
uncertainty of the residual, thereby increasing the probability of false detection events in the fault detection task. For integrity
applications, some integrity and continuity budgets should be allocated to the risks associated with ignoring the high-order terms.
A possible solution is to determine the bounding relationship between high-order terms and then scale the low-order terms to
compensate for the effects of high-order terms on the uncertainty of the residual. In addition, we assume that the transformation
method based on the law of the total variance can transform GMM-distributed residual to a variable whose distribution approaches
standard MVN. However, this assumption holds only when each Gaussian component in the GMM-distributed residual has
a small difference in the covariance. This constraint is satisfied in the LiDAR/IMU integrated system. However, when the
measurement noise exhibits significant heavy tails, the transformation method can not guarantee the similarity, thereby hindering
the performance of the proposed fault detection algorithms. Further efforts should be made to develop an advanced transformation
method to ensure the similarity between the transformed distribution and the standard MVN distribution, widening the application
of non-Gaussian fault detection algorithms in other localization systems, such as GNSS/IMU integrated systems. Moreover, this
study focuses on the detection of single measurement failure. Future work can extend the proposed fault detection algorithm to
multiple fault detection problems by adopting the exhaustive search or greedy search algorithms as in Blanch et al. (2015). Last
but not least, this study gives little concern to the effects of the geometry configuration of 2D LiDARs on state estimation and
fault detection performance. For practical purposes, future research could investigate the optimal geometry configuration based
on the simulated platform constructed in this study.
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Appendix A NOTATIONS

TA B L E A1
Description of Symbols and Operators

Sym.1 Description Sym. Description

Symbols in sensor platform and motion model
GpI Translation vector from {I} to {G} G

I R Rotation matrix from {I} to {G}
GvI Velocity of {I} frame in {G} frame LpI Translation vector from {I} to {L}
IqG Rotation from {G} to {I} in quaternion LqI Rotation from {I} to {L} in quaternion

ba Accelerometer measurement bias L
I R Rotation matrix from {I} to {L}

bg Gyroscope measurement bias am The accelerator measurement

aGI Acceleration vector of {I} w.r.t.2 {G} wm The gyroscope measurement

wGI Angular velocity of {G} w.r.t. {I} Σa Covariance of na

na Accelerometer measurement noise Σg Covariance of ng

ng Gyroscope measurement noise Σwa Covariance of nwa

nwa Noise related to ba Σwg Covariance of nwg

nwg Noise related to bg

Symbols in LiDAR processing

Πi ith plane Lxi The shortest vector in scan plane from {L} to Πi

Gπi Normal of the plane Πi in {G} di Shortest distance from {G} to the plane Πi

LzL Normal of the LiDAR scan plane Lξi Unit direction vector of Lxi

Ldi
Ldi =di − Gπi

T (
GpI +

G
I R

IpL

)
ρi The length of Lxi

Lai
Lai =

L
GR

Gπi =
[
ai1, a

i
2, a

i
3

]T
ϕi The angle made by Lxi and the polar axis

Symbols in EKF based localization

xk State vector at discrete time k vk Process noise at time k

x̂−
k Predicted state at discrete time k uk Measurement from IMU at time k

x̂+
k Estimated state at discrete time k P−

k Predicted covariance of estimated state by EKF at
time k

n Number of measurements Qk Covariance of vk

Pk Covariance of estimated state by EKF at time k Kk The Kalman gain at time k

Fk State transition matrix at time k Gk Noise Jacobian matrix at time k

yi,k ith measurement at time k ηi,k Noise of ith measurement at time k

yk Measurements at time k ηk Measurement noise at time k

hi (xk) Measurement function associated with xk and yi,k Hi
k Jacobian matrix of hi (xk)

h (xk) Measurement function associated with xk Hk Jacobian matrix of h (xk)

Symbols in residual analysis and fault detection

rk Residual w.r.t. measurements at k fη(·) The PDF of the measurement noise η

m1 Number of Gaussian modes in η fv(·) The PDF of the system noise v

m2 Number of Gaussian modes in v frk(·) The PDF of the residual rk
Tg Transformation of rk based on GMM assumptions tg Test statistic of rk based on GMM assumptions

T0
g Transformation of rk based on Gaussian assump-

tions
t0g Test statistic of rk based on Gaussian assumptions

Operators

[·]× Standard vector cross-product × Standard vector cross-product

· Vector dot product ∗ Convolution operator
1 “Sym.” is the abbreviation of “Symbol”.
2 “w.r.t.” is the abbreviation of “with respect to”.
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Appendix B DISTRIBUTION OF THE RESIDUAL

Equation (23) shows that rk is the linear combination of independent random variables Vk−1vk−1, Nk−1vk−2, and ηk. Therefore,
the PDF of rk is the convolution of the PDF of these random variables, which can be written as

frk = fVk−1v ∗ fNk−1v ∗ fη , (B1)

where ∗ is the convolution operator. Since vk−1 and vk−2 are assumed to be i.i.d., we drop the time index in the above equation.
The characteristic functions of rk, η, and v are given as follows:

φrk (ω) =

∫ ∞

−∞
frk (x) e

iωTxdx (B2a)

φη (ω) =

∫ ∞

−∞
fη (x) eiω

Txdx =

m1∑
j=1

pηj

∫ ∞

−∞
N

(
x
∣∣µη

j ,π
η
j

)
eiω

Txdx (B2b)

=

m1∑
j=1

pηjφN (ω) =

m1∑
j=1

pηj e
iωTµη

j−
1
2ω

Tπη
j ω

φv (ω) =

∫ ∞

−∞
fv (x) e

iωTxdx =

m2∑
j=1

pvj e
iωTµv

j− 1
2ω

Tπv
j ω , (B2c)

where φN (ω) is the characteristic function of a multinormal variable. Let y = Ax + b be the linear transformation of the
random vector x, where A is a constant matrix and b is a constant vector. The characteristic function of y is given by

φy (ω) = eiω
Tbφx

(
ATω

)
. (B3)

Therefore, we have

φNk−1v (ω) = φv

(
NT

k−1ω
)
=

m2∑
j=1

pvj e
iωTNk−1µ

v
j− 1

2ω
TNk−1π

v
j N

T
k−1ω (B4a)

φVk−1v (ω) = φv

(
VT

k−1ω
)
=

m2∑
j=1

pvj e
iωTVk−1µ

v
j− 1

2ω
TVk−1π

v
j V

T
k−1ω . (B4b)

According to the convolution theorem,

φrk (ω) = φv

(
VT

k−1ω
)
· φv

(
NT

k−1ω
)
· φη (ω) , (B5)

where · is point-wise multiplication. Substituting Equations (B2b) and (B4) into Equation (B5), we can obtain

φrk (ω) =

m2∑
a=1

m2∑
b=1

m1∑
c=1

pabce
iωTµabc− 1

2ω
Tπabcω , (B6)

where

pabc = pvap
v
bp

η
c (B7a)

µabc = Vk−1µ
v
a +Nk−1µ

v
b + µη

c (B7b)
πabc = Vk−1π

v
aV

T
k−1 +Nk−1π

v
bN

T
k−1 + πη

c . (B7c)

Do the inverse operation shown in Equation (B2b),

φrk (ω) =

m2∑
a=1

m2∑
b=1

m1∑
c=1

pabc

∫ ∞

−∞
N (x|µabc,πabc) e

iωTxdx . (B8)

Therefore,

frk (x) =

m2∑
a=1

m2∑
b=1

m1∑
c=1

pabcN (x|µabc,πabc) dx , (B9)

which indicates that rk has a multivariate GMM distribution.
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Appendix C SIMILARITY TO STANDARD MVN DISTRIBUTION

To evaluate the similarity between the transformed distribution and the standard multivariate normal (MVN) distribution, we
calculate the discretized Jensen–Shannon divergence between the two distributions (MacKay, 2003). Let P (x) and Q(x) be the
probability mass function (PMF) of distributions P and Q, repressively. The discretized Jensen–Shannon divergence (DJS)
between P and Q defined on the identical sample space is given by

DJS(P ||Q)=
1

2
DKL(P ||M) +

1

2
DKL(Q||M)

DKL(P ||Q)=
∑
x∈S

P (x) log

(
P (x)

Q(x)

)
,

(C1)

where M = 1
2 (P +Q), and DKL is the Kullback–Leibler divergence (relative entropy). The minimum value 0 of the DJS

means two distributions are the same, while the maximum value 1 means completely different (MacKay, 2003; Manning &
Schutze, 1999). In our work, P refers to the transformed distribution from a bivariate Gaussian Mixture model (BGMM) and
Q refers to the standard MVN distribution. To comprehensively evaluate the similarity between the transformed distribution
and the standard MVN distribution, we start the discussion with the 2-dimensional (2-D) case and then extend the findings to
higher-dimensional cases.

(1) Transformation of 2-dimensional BGMM

The Probability density function (PDF) of a 2-D BGMM can be formalized as

f(x) = p1fN (x;µ1,Σ1) + (1− p1) fN (x;µ2,Σ2) , (C2)

where fN (x;µ1,Σ1) and fN (x;µ2,Σ2) are the PDF of the first and the second Gaussian component, µ1 and µ2 are the
corresponding mean value, Σ1 and Σ2 are the corresponding standard deviations, and p1 and 1− p1 are the mixing weight of the
two Gaussian components, respectively. Equation (C2) is determined by thirteen parameters, i.e., p1, two elements in µ1, two
elements in µ2, four elements in Σ1, and four elements in Σ2, which span a thirteen-dimension parameter space. It is difficult to
determine the parameter combinations in this thirteen-dimension parameter space such that the transformed distribution resembles
the standard MVN distribution. Therefore, we use a re-parameterization method to reduce the dimension of the parameter space
(Li & Schwartzman, 2018). Specifically, we use four parameters, including k1, k2, ρ, and p1, to define a 2-D BGMM, as shown in
Table C1. The 50% density contours of the re-parameterized BGMM with ρ = 0.5 and p1 = 0.5 are plotted in Figure C1. As
can be seen, p1 determines the weight of two Gaussian components, k1 determines the distances between the centers of two
ellipses, k2 controls the scale of the ellipse of the 2nd Gaussian component, and ρ determines the ellipse eccentricity of the 2nd
Gaussian component.

TA B L E C1
Re-parameterization of 2-D BGMM

Mixture Weight Mean Variance

Component 1 p1 µ1 =

[
0
0

]
Σ1 =

[
1 0
0 1

]
Component 2 1− p1 µ2 = k1

[
1
1

]
Σ2 = k2

2

[
1 ρ
ρ 1

]

Based on the re-parameterized BGMM, We conduct the Monte Carlo simulation to evaluate the similarity between the transformed
distribution from a BGMM and the standard MVN distribution. Specifically, for each setting of (p1, k1, k2, ρ), we randomly
generate N samples {x1,x2, · · · ,xN} from the 2-D BGMM, where N is set as 105 in our experiments. Then, we apply the
proposed transformation method to each sample:

Ti,g = Σ−1/2 (xi − µ) , (C3)



xxx

F I G U R E C1 50% density contours of the re-parameterized BGMM with ρ = 0.5 and p1 = 0.5. The purple ellipse stands for the density
contour of component 1, while the red ellipse represents the density contour of component 2.

where µ is the total mean and Σ−1/2 is the principal square root matrix of the total covariance (Σ) of the BGMM, respectively.
According to the law of total covariance (Weiss et al., 2006), µ and Σ are given by

µ = p1µ1 + (1− p1)µ2 (C4a)

Σ = p1Σ1 + (1− p1)Σ2 +

2∑
j=1

(µ− µj)(µ− µj)
T . (C4b)

The transformed sample distribution is denoted by {T1,g,T2,g, · · · ,TN,g}. Then, we randomly generate N samples
{y1,y2, · · · ,yN} from a standard 2-D MVN distribution. Let P = {T1,g,T2,g, · · · ,TN,g} and Q = {y1,y2, · · · ,yN}. We
can employ Equation (C1) to calculate the overall similarity between P and Q. Since the DJS is defined on a 1-D distribution,
we will show the similarity between P and Q in each dimension in the following paragraphs.

Figure C2 shows the DJS between the 1st dimension of the transformed distribution and the standard 2-D MVN distribution. The
results are present in the form of heatmaps with ρ ∈ {0, 0.5, 1}, k1 ∈ {0.01, 0.1, 1, 10} and p1 and k2 vary continuously. It is
interesting to find that the lowest DJS centered in the region of k2 ∈ [1, 3] (except the case of ρ = 1, k1 = 10), where the two
Gaussian components have similar covariance. In this region, the total covariance in Equation (C4b) is similar to the covariance
of each component, thereby accurately characterizing the uncertainty of the BGMM. Similar results are found in Figure C3,
which shows the DJS between the 2nd dimension of the transformed distribution and the standard 2-D MVN distribution.

(2) Transformation of higher-dimensional BGMM

We further examine the similarity between the transformed distribution from a K-dimensional (K > 2) BGMM and the standard
MVN distribution. Considering it is impossible to conduct experiments with all values of K (which are infinite), we choose
K to be 27, which is the average of the number of 2D-LiDAR measurements in the simulated experiments in Section 4. We
re-parameterize the 27-D BGMM using three parameters, including p1, k1, and k2, as shown in Table C2. Similar to the 2-D
BGMM experiments, we conduct the Monte-Carlo simulation to obtain the transformed sample distribution in different settings
of p1, k1, and k2. Following the analysis procedure in the 2-D BGMM experiments, we need to calculate the DJS between the
transformed distribution and the standard MVN distribution in each dimension, yielding 27 heatmaps. As can be anticipated,
this process would complicate the analysis. Therefore, we use an alternative approach to evaluate the similarity between the
transformed distribution and the standard MVN distribution.

Let the transform sample distribution be P = {T1,g,T2,g, · · · ,TN,g}. For each sample Ti,g in P , we calculate its inner product
with itself, i.e., TT

i,gTi,g. Then, we obtain the distribution P1 = {TT
1,gT1,g,T

T
2,gT2,g, · · · ,TT

N,gTN,g}. If the distribution P
approaches the standard MVN distribution, the distribution P1 should approach a chi-squared distribution with 27 degrees of
freedom (DOF). Therefore, we can evaluate the similarity between the distribution P1 and the chi-squared distribution with 27
DOF. Figure C4 shows the DJS between the distribution P1 and the chi-squared distribution with 27 DOF in the form of heatmaps
with k1 ∈ {0.01, 0.1, 1, 10} and p1 and k2 vary continuously. Similar to the trends in the 2-D BGMM experiments, the lowest
DJS centered in the region of k2 ∈ [1, 3]. Therefore, the P1 distribution is similar to the chi-squared distribution with 27 DOF in
this region, thus suggesting that the transformed distribution from a 27-D BGMM is similar to the 27-D MVN distribution.

Through the analysis in the 2-D and 27-D BGMM experiments, we find that the similarity assumption holds when each Gaussian
component in the GMM-distributed residual has a small difference in the covariance. This constraint is satisfied in the LiDAR/IMU
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TA B L E C2
Re-parameterization of 27-D BGMM

Mixture Weight Mean Variance

Component 1 p1 µ1 =
[
0 . . . 0

]T
1×27

Σ1 = I27
1

Component 2 1− p1 µ2 = k1
[
1 . . . 1

]T
1×27

Σ2 = k2
2I27

1 I27 is the identity matrix of size 27.

integrated system. This is because the LiDAR measurement error is slightly heavy-tailed (Toschi et al., 2015), indicating that the
difference in the covariance between the two Gaussian components is insignificant.
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F I G U R E C2 The DJS between the 1st dimension of the transformed distribution and the standard MVN distribution.



xxx

(k
1
=0.01)

2 4 6 8

0.2

0.4

0.6

0.8

(
 =

 0
) 

p
1

(k
1
=0.1)

2 4 6 8

0.2

0.4

0.6

0.8

(k
1
=1)

2 4 6 8

0.2

0.4

0.6

0.8

(k
1
=10)

2 4 6 8

0.2

0.4

0.6

0.8

0

0.01

0.02

0.03

0.04

0.05

2 4 6 8

0.2

0.4

0.6

0.8

(
 =

 0
.5

) 
p

1

2 4 6 8

0.2

0.4

0.6

0.8

2 4 6 8

0.2

0.4

0.6

0.8

2 4 6 8

0.2

0.4

0.6

0.8

0

0.01

0.02

0.03

0.04

0.05

2 4 6 8

k
2

0.2

0.4

0.6

0.8

(
 =

 1
) 

p
1

2 4 6 8

k
2

0.2

0.4

0.6

0.8

2 4 6 8

k
2

0.2

0.4

0.6

0.8

2 4 6 8

k
2

0.2

0.4

0.6

0.8

0

0.01

0.02

0.03

0.04

0.05

F I G U R E C3 The DJS between the 2nd dimension of the transformed distribution and the standard MVN distribution.
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F I G U R E C4 The DJS between the distribution P1 and the chi-squared distribution with 27 DOF.
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Appendix D LIDAR PROCESSING

Appendix D.1 Least norm solution for LiDAR measurement models
Following notations in Figure 3(b) and their definitions in Section 3.2, we assume that the extrinsic calibration parameters(
IpL,

I
LR

)
and the vehicle pose

(
GpI ,

G
I R

)
are known, the plane Πi associated with the current LiDAR scan plan is found

based on the vehicle pose
(
GpI ,

G
I R

)
by a matching algorithm, and di and Gπi are known. We have the following constraints:

(1) Lxi is a laser beam, so it must be in the LiDAR scan plane (Zhao & Farrell, 2013)

Let LzL = [0 0 1]
T be the normal of the LiDAR scan plane, we have

LzTL
Lxi = 0 . (D1)

(2) Distance constraint (Hesch et al., 2010)

As can be seen in Figure 3(b), the vector from {G} to point M can be obtained either by

GpI +
G
I R

(
IpL + I

LR
Lxi

)
(D2)

or
di

Gπi +
Gti , (D3)

both of which are equivalent. Therefore, we have

GpI +
G
I R

(
IpL + I

LR
Lxi

)
= di

Gπi +
Gti . (D4)

By projecting Equation (D4) onto GπT
i , we obtain

GπT
i

(
GpI +

G
I R

(
IpL + I

LR
Lxi

))
= GπT

i di
Gπi +

GπT
i
Gti . (D5)

Since Gπi⊥Gti and Gπi is a unit vector,

GπT
i
G
LR

Lxi = di − GπT
i

(
GpI +

G
I R

IpL

)
. (D6)

By combining Equations (D1) and (D6), we have
ALxi = b , (D7)

where
A =

[
LzTL

GπT
i
G
LR

]
2×3

,b =

[
0

Ldi

]
2×1

, (D8)

Ldi =di −
GπT

i

(
GpI +

G
I R

IpL

)
. (D9)

Since Lxi = [ρi cosϕi ρi sinϕi 0]
T is the shortest vector in the LiDAR scan plane from the origin of {L} to Πi, we can solve

the following optimizing problem to estimate the value of ρi and ϕi:

Lx∗
i = argmin

Lxi

∥∥Lxi

∥∥2
s.t. ALxi = b ,

(D10)

where Lx∗
i is the least-norm solution of linear equation ALxi = b (Cline & Plemmons, 1976). The solution is

Lx∗
i = AT

(
AAT

)−1
b . (D11)

Let
Lai =

L
GR

Gπi =
[
ai1, a

i
2, a

i
3

]T (D12)
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which is a unit vector. We can rewrite Equation (D8) as:

A =

[
0 0 1
ai1 ai2 ai3

]
. (D13)

Therefore,

AT
(
AAT

)−1
=

−ai1a
i
3 ai1

−ai2a
i
3 ai2

1− ai3
2

0


1− ai3

2 . (D14)

As Lai =
[
ai1, a

i
2, a

i
3

]T is a unit vector, ai1
2
+ ai2

2
+ ai3

2
= 1. We have

Lx∗
i =

1

ai1
2
+ ai2

2

−ai1a
i
3 ai1

−ai2a
i
3 ai2

1− ai3
2

0

[
0

Ldi

]
=

ai1ai2
0

 Ldi

ai1
2
+ ai2

2 (D15)

ρ∗i

cosϕ∗
i

sinϕ∗
i

0

 =

ai1ai2
0

 Ldi

ai1
2
+ ai2

2 =


a1√

ai
1
2+ai

2
2

a2√
ai
1
2+ai

2
2

0

 Ldi√
ai1

2
+ ai2

2
. (D16)

Therefore, the least norm solution can be obtained as:

ρ∗i =

∣∣Ldi∣∣√
ai1

2
+ ai2

2
(D17a)

ϕ∗
i = arctan

(
sgn

(
Ldi

) ai2
ai1

)
. (D17b)

Appendix D.2 Line extraction and feature association
(1) Extract line segment from 2D LiDAR points

To extract line segments from raw 2D LiDAR measurements, we adopt the method from Pfister et al. (2003), and the main idea is
summarized as follows. A line segment Li is represented by three parameters ρi, ϕi, and Si, where (ρi, ϕi) is the ranging and
bearing parameters associated with the vector perpendicular to Li in the polar coordinate system, and Si is the distance from
the perpendicular to the line segment’s center, as shown in Figure 3(a). For jth 2D LiDAR point, denote its distance from the
line segment as δρj and its distance from the center of the line segment projected on the line segment as δSj . The best-fitted line
segment is found by minimizing δρj and δSj of all LiDAR points by the maximum likelihood estimation.

(2) Associate line segments with plane

As illustrated in Section 3.2, the laser scan plane intersects with several planes, and the intersection is the line segments. The
parameters of these line segments can be predicted according to the current pose of the vehicle, as shown in Equation (44).
Therefore, the association of line segments and planes can be achieved by examining the closeness between the predicted line
segment and the extracted line segment. For the rth plane Πr the line segment predicted by Equation (44) is parameterized by
ŷr = [ϕr, ρr]

T . The extracted line segment can also be parameterized by yi = [ϕi, ρi]
T in the polar coordinate system. The

Mahalanobis distance from ŷr to yi is given by ∥ŷr − yi∥Pyi
, where Pyi is the covariance matrix of the extracted line segment.

The best-fitted plane can be found by minimizing ∥ŷr − yi∥Pyi
. Assuming the extracted line segment has the zero-mean Gaussian

noise, we can observe that the Mahalanobis distance follows a Chi-squared distribution with 2 DOF. If rth plane fails to satisfy
∥ŷr − yi∥Pyi

< δa, the rth plane is excluded from the association process. If none of the planes satisfy this condition, the
extracted line segment yi is excluded from constructing the final set of measurements. The threshold δa is determined by a given
significance level, which is set as 0.05 (Pfister et al., 2003).
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Appendix E LINEARIZATION OF EKF-BASED LIDAR/IMU INTEGRATED SYSTEM

Appendix E.1 Derivative of the rotation matrix
Let g = [gx, gy, gz]

T , q =
[
qw,q

T
v

]T , and qv = [qx, qy, qz]
T , and then the rotation matrix corresponding to q is

R {q} =

1− 2
(
q2y + q2z

)
2 (qxqy − qwqz) 2 (qxqz + qwqy)

2 (qxqy + qwqz) 1− 2
(
q2x + q2z

)
2 (qyqz − qwqx)

2 (qxqz − qwqy) 2 (qyqz + qwqx) 1− 2
(
q2x + q2y

)
 . (E1)

The derivative of RT {q}g with respect to q can be solved by doing the element-wise derivation,

∂RT {q}g
∂q

= 2
[
ug [ug + qwg]× + (qv · g) I3 − gqT

v

]
, (E2)

where
ug = g × qv = [g]× qv . (E3)

Since R {q} = RT {q∗}, where q∗ is the conjugate of q, we can obtain the derivative of R {q}g with respect to q:

∂R {q}g
∂q

=
∂RT {q∗}g

∂q
=

∂RT {q∗}g
∂q∗

∂q∗

∂q
, (E4)

where
∂q∗

∂q
=

[
∂q∗

∂qw

∂q∗

∂qx

∂q∗

∂qy

∂q∗

∂qz

]
= diag [1,−1,−1,−1] . (E5)

Therefore,
∂R {q}g

∂q
=

∂RT {q∗ }g
∂q∗ diag [1,−1,−1,−1] . (E6)

For convenience, we introduce two symbols,

Jq (q,g) =
∂RT {q}g

∂q
(E7a)

J∗
q (q,g) =

∂R {q}g
∂q

. (E7b)

Appendix E.2 Linearization of the rotation part of the state propagation equation
The rotation part in the state propagation equation in Equation (41) is given by

IqG,k+1 = g
(
IqG,k,wGI,k

)
= exp

(
∆t

2
Ω [wGI,k]

)
IqG,k (E8a)

wGI,k = wm,k − bg,k − ng , (E8b)

where exp(·) is a function of matrix defined by

exp (M) =

n∑
i=0

Mn

n!
. (E9)

Therefore, Equation (E8a) can be expanded as

g
(
IqG,k,wGI,k

)
=

(
I4 +

1

2
Ω [wGI,k] ∆t+O

(
(Ω [wGI,k])

2
))

IqG,k . (E10)

By keeping the first-order term and neglecting the high-order terms in the above equations, we have

g
(
IqG,k,wGI,k

)
=

(
I4 +

1

2
Ω [wGI,k] ∆t

)
IqG,k =

[
I3 − 1

2∆t [wGI,k]×
1
2∆twGI,k

− 1
2∆twT

GI,k 1

]
IqG,k . (E11)
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Let I q̂G,k = [q̂w,k, q̂x,k, q̂y,k, q̂z,k] be the estimated vehicle orientation in terms of quaternion at time k, the Jacobian matrix of
g
(
IqG,k,wGI,k

)
with respect to IqG,k can be obtained by taking the first-order Taylor expansion at the point

(
I q̂G,k,wm,k

)
,

∂g
(
I q̂G,k,wm,k

)
∂IqG,k

=

[
I3 − 1

2∆t [wGI,k]×
1
2∆twGI,k

− 1
2∆twT

GI,k 1

]
. (E12)

Similarly, the Jacobian matrix of g
(
IqG,k,wGI,k

)
evaluated at

(
I q̂G,k,wm,k

)
with respect to wGI,k can be obtained by

∂g
(
I q̂G,k,wm,k

)
∂wGI,k

=

[
∂g

(
I q̂G,k,wm,k

)
∂wx,k

,
∂g

(
I q̂G,k,wm,k

)
∂wy,k

,
∂g

(
I q̂G,k,wm,k

)
∂wz,k

]
=

∆t

2


q̂z,k −q̂y,k q̂x,k
q̂y,k q̂z,k −q̂w,k

−q̂x,k q̂w,k q̂z,k
−q̂w,k −q̂x,k −q̂y,k

 . (E13)

Appendix E.3 Linearization of the measurement function

As defined in Section 3.2, hi (xk) consists of two parts: hi
1 (x) and hi

2 (x). We are going to derive ∂hi
1(x̂

−
k )

∂xk
and ∂hi

2(x̂
−
k )

∂xk
,

separately. To simplify notations, we omit the indices i and k in xk, GpI,k, IqG,k, x̂−
k , I p̂−

G,k, I q̂−
G,k, ai,k1 , ai,k2 , and ai,k3 during

the following derivation without loss of generality.

(1) The first part of the Jacobian Matrix

The first part of the Jacobian Matrix Hi
k defined in Equation (45) can be written as

∂hi
1 (x̂

−)

∂x
=

[
∂hi

1 (x̂
−)

∂GpI
, 01×3,

∂hi
1 (x̂

−)

∂IqG
, 01×6

]
, (E14)

where
hi
1 (x) = arctan

(
sgn

(
Ldi,k

) a2
a1

)
, (E15)

x, GpI , and IqG are defined in Equation (40), Lai,k = L
GR

Gπi,k = [a1, a2, a3]
T is the discrete form of Lai defined in Equation

(D12), and Ldi,k is the discrete form of Ldi defined in Equation (D9). According to the chain rule:

∂hi
1(·)

∂IqG
=

∂hi
1(·)

∂Lai,k
· ∂

Lai,k
∂IqG

. (E16)

By substituting Equation (E15) into Equation (E16), the first term of Equation (E16) can be written by

∂hi
1(·)

∂Lai,k
=

∂arctan
(

sgn
(
Ldi,k

)
a2

a1

)
∂Lai,k

, (E17)

where sgn(·) is the sign function and dsgn(x)
dx = 2δ(x). Now Equation (E17) can be reduced as

∂hi
1(·)

∂Lai,k
=

(
1 +

a22
a21

)−1 (
2δ

(
Ldi,k

) ∂Ldi,k
∂Lai,k

· a2
a1

+ sgn
(
Ldi,k

) ∂ a2

a1

∂Lai,k

)
. (E18)

According to Equations (D6) and (D9),

Ldi,k = di,k − GπT
i,k

(
GpI +

G
I R

IpL

)
= GπT

i,k
G
LR

Lx∗
i,k , (E19)

where G
LR

Lx∗
i,k represents the shortest vector from the origin of {L} to the plane Πi in {G} at time k, which cannot be zero. In

addition, Gπi,k is the normal of the planar surface, which cannot be zero. Therefore, Ldi,k ̸= 0, and thus δ
(
Ldi,k

)
= 0. Then

Equation (E18) is simplified as
∂hi

1(·)
∂Lai,k

= sgn
(
Ldi,k

) ∂ a2

a1

∂Lai,k

(
1 +

a22
a21

)−1

, (E20)
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where
∂ a2

a1

∂Lai,k
=

[
∂ a2

a1

∂a1
,
∂ a2

a1

∂a2
,
∂ a2

a1

∂a3

]
=

[
−a2
a21

,
1

a1
, 0

]
. (E21)

Therefore, Equation (E20) has the following expression:

∂hi
1(·)

∂Lai,k
=

1

µi,k
λT
i,k , (E22)

where

µi,k = a21 + a22 , (E23a)
λT
i,k = sgn

(
Ldi,k

)
[−a2, a1, 0] . (E23b)

The second term in Equation (E16) is given by

∂Lai,k
∂IqG

=
∂L
GR

Gπi,k

∂IqG
= L

I R
∂I
GR

TGπi,k

∂IqG
. (E24)

The above equation contains the partial derivative of the rotation matrix with respect to the quaternion, which can be solved by
taking the derivative of the rotation matrix element-wisely, as illustrated in Appendix E.1. Therefore, Equation (E24) can be
derived using the conclusion in Appendix E.1:

∂Lai,k
∂IqG

= L
I RJ∗

q

(
IqG,

Gπi,k

)
, (E25)

where

J∗
q

(
IqG,

Gπi,k

)
= Jq

(
Iq∗

G,
Gπi,k

)
diag [1,−1,−1,−1] (E26a)

Jq
(
IqG,

Gπi,k

)
= 2

[
uπ ,

[
uπ + qw

Gπi,k

]
× +

(
qv · Gπi,k

)
I3 − Gπi,kq

T
v

]
(E26b)

uπ = Gπi,k × qv =
[
Gπi,k

]
× qv (E26c)

IqG =
[
qw,q

T
v

]T
= [qw, qx, qy, qz]

T

. (E26d)

Substitute Equations (E22) and (E25) into Equation (E16) to obtain

∂hi
1(·)

∂IqG
=

1

µi,k
λT
i,k

L
I RJ∗

q

(
IqG,

Gπi,k

)
. (E27)

Similarly, according to the chain rule,
∂hi

1(·)
∂GpI

=
∂hi

1(·)
∂Lai,k

· ∂
Lai,k

∂GpI
. (E28)

Since Lai,k = L
GR

Gπi,k, which means Lai,k is only related to the rotation part of the state, Equation (E28) has the following
expression:

∂hi
1(·)

∂GpI
= 0 . (E29)

By substituting Equations (E27) and (E29) into Equation (E14), we obtain the final expression of the first part of the Jacobian
matrix:

∂hi
1 (x̂

−)

∂x
=

[
01×6,

1

µ̂−
i,k

λ̂−T

i,k
L
I RJ∗

q

(
I q̂−

G,
Gπi,k

)
, 01×6

]
, (E30)

where µ̂−
i,k is defined in Equation (E23a) and λ̂−

i,k is defined in Equation (E23b), both of which are evaluated at x̂−.



xxx

(2) The second part of the Jacobian Matrix

The second part of Jacobian Matrix Hi
k can be written as

∂hi
2 (x̂

−)

∂x
=

[
∂hi

2 (x̂
−)

∂GpI
, 01×3,

∂hi
2 (x̂

−)

∂IqG
, 01×6

]
, (E31)

where

hi
2 (x) =

∣∣Ldi,k∣∣√
a21 + a22

. (E32)

We first consider the derivative with respect to the rotation part,

∂hi
2(·)

∂IqG
=

1√
a21 + a22

∂
∣∣Ldi,k∣∣
∂IqG

+
∣∣Ldi,k∣∣ ∂ (

a21 + a22
)− 1

2

∂IqG
. (E33)

In the first part of Equation (E33),
∂
∣∣Ldi,k∣∣
∂IqG

= sgn
(
Ldi,k

) ∂Ldi,k
∂IqG

. (E34)

Substitute Equation (D9) into Equation (E34),

∂
∣∣Ldi,k∣∣
∂IqG

= sgn
(
Ldi,k

) ∂ (
di,k − GπT

i,k

(
GpI +

G
I R

IpL

))
∂IqG

. (E35)

According to Appendix E.1,
∂G
I R

IpL

∂IqG
=

∂I
GR

T IpL

∂IqG
= Jq

(
IqG,

IpL

)
. (E36)

Substitute Equation (E36) into Equation (E35),

∂
∣∣Ldi,k∣∣
∂IqG

= −sgn
(
Ldi,k

)
GπT

i,kJq
(
IqG,

IpL

)
. (E37)

In the second part of Equation (E33), the chain rule is applied that

∂
(
a21 + a22

)− 1
2

∂IqG
=

∂
(
a21 + a22

)− 1
2

∂ Lai,k
· ∂

Lai,k
∂IqG

. (E38)

By expanding Lai into the elementwise form,

∂
(
a21 + a22

)− 1
2

∂ Lai,k
=

∂
(
a21 + a22

)− 1
2

∂ a1
,
∂
(
a21 + a22

)− 1
2

∂ a2
,
∂
(
a21 + a22

)− 1
2

∂ a3

 = −
(
a1

2 + a2
2
)− 3

2 [a1, a2, 0] . (E39)

Substitute Equations (E25) and (E39) into Equation (E38),

∂
(
a21 + a22

)− 1
2

∂IqG
= −

(
a1

2 + a2
2
)− 3

2 [a1, a2, 0]
L
I RJ∗

q

(
IqG,

Gπi,k

)
. (E40)

By substituting Equations (E37) and (E40) into Equation (E33), the final expression of Equation (E33) is written as

∂hi
2(·)

∂IqG
= −sgn

(
Ldi,k

) GπT
i,k√

µi,k
Jq

(
IqG,

IpL

)
+

∣∣Ldi,k∣∣κT
i,k

L
I RJ∗

q

(
IqG,

Gπi,k

)
, (E41)

where
κT
i,k = −µ

− 3
2

i,k
[a1, a2, 0] . (E42)



xxx

Similarly,
∂hi

2(·)
∂GpI

=
1√

a21 + a22

∂
∣∣Ldi,k∣∣
∂GpI

+
∣∣Ldi,k∣∣ ∂ (

a21 + a22
)− 1

2

∂GpI
. (E43)

In the first part of Equation (E43),

∂
∣∣Ldi,k∣∣
∂GpI

= sgn
(
Ldi,k

) ∂Ldi,k
∂GpI

. (E44)

Substitute Equation (D9) into Equation (E44),

∂
∣∣Ldi,k∣∣
∂GpI

= sgn
(
Ldi,k

) ∂ (
di,k − GπT

i,k

(
GpI +

G
I R

IpL

))
∂GpI

= −sgn
(
Ldi,k

)
GπT

i,k . (E45)

In the second part of Equation (E43), since Lai,k = L
GR

Gπi,k = [a1, a2, a3]
T , a1 and a2 are only related to the rotation part of

the state. Therefore,
∂
(
a21 + a22

)− 1
2

∂GpI
= 0 . (E46)

Substitute Equations (E44) and (E46) into Equation (E43),

∂hi
2(·)

∂GpI
= −sgn

(
Ldi,k

) GπT
i,k√

µ
i,k

. (E47)

By substituting Equations (E41) and (E47) into Equation (E31), we obtain the final expression of the second part of the Jacobian
matrix,

∂hi
2

(
x̂−)

∂x
=

−sgn
(
Ld̂−i,k

) GπT
i,k√

µ̂−
i,k

, 01×3, − sgn
(
Ld̂−i,k

) GπT
i,k√

µ̂−
i,k

Jq
(
I q̂−

G, IpL

)
+

∣∣∣Ld̂−i,k∣∣∣ κ̂T
i,k

L
I RJ∗

q

(
I q̂−

G,Gπi,k

)
, 01×6

 , (E48)

where κ̂T
i,k is defined in Equation (E42) and evaluated at x̂−.

By re-arranging Equations (E30) and (E48), the Jacobian matrix of hi (xk) defined with respect to xk and evaluated at x̂−
k can

be written as

Hi
k =

 01×3 01×3
1

µ̂−
i,k

λ̂−T

i,k
L
I RJ∗

q

(
I q̂−

G,
Gπi,k

)
01×6

−sgn
(
Ld̂−i,k

) GπT
i,k√

µ̂−
i,k

01×3 −sgn
(
Ld̂−i,k

) GπT
i,k√

µ̂−
i,k

Jq

(
I q̂−

G,
IpL

)
+

∣∣∣Ld̂−i,k∣∣∣ κ̂T
i,k

L
I RJ∗

q

(
I q̂−

G,
Gπi,k

)
01×6

 . (E49)
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Appendix F MORE RESULTS OF FAULT DETECTION

TA B L E F1
Statistical Results of False Alarm Rate (FAR) and Fault Detection Rate (FDR) with Step Failure (α = 0.01)

Range Noise Setting Failure Group
Total Gaussian-GMM Method Gaussian Method

FAR (%) FDR (%) FAR (%) FDR (%)

N1
A1

4.47
18.75

2.79
14.38

A2 85.00 71.88

N2
A1

3.07
18.13

1.40
12.50

A2 72.50 52.50

N3
A1

4.47
14.38

3.35
15.00

A2 91.25 88.75

N4
A1

1.68
11.88

1.40
9.38

A2 71.88 60.63

Gaussian N
(
0, 0.032

) A1
2.23

11.88
2.23

11.88

A2 68.75 68.75

TA B L E F2
Statistical Results of False Alarm Rate (FAR) and Fault Detection Rate (FDR) with Step Failure (α = 0.001)

Range Noise Setting Failure Group
Total Gaussian-GMM Method Gaussian Method

FAR (%) FDR (%) FAR (%) FDR (%)

N1
A1

2.23
14.38

1.96
8.75

A2 73.75 62.50

N2
A1

1.11
10.00

0.84
6.88

A2 58.13 37.50

N3
A1

1.68
9.38

1.68
8.13

A2 81.88 76.20

N4
A1

1.40
5.63

0.84
3.13

A2 55.63 47.50

Gaussian N
(
0, 0.032

) A1
0.56

6.88
0.56

6.88

A2 68.13 68.13
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